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Abstract.  In this paper we describe a parameter estimation procedure which combines the 
Levenberg-Marquardt nonlinear parameter optimization method involving weighted least squares 
with either a one-dimensional numerical model (HYDRUS-1D) or a two- or quasi three-
dimensional model (HYDRUS-2D), which solve the governing equations for water flow and 
solute transport in variably-saturated porous media.  The procedure permits several unknown 
parameters in the unsaturated soil-hydraulic functions to be estimated from observed water 
contents, pressure heads, and/or instantaneous or cumulative boundary fluxes (e.g., infiltration or 
outflow data) during transient water flow by numerical inversion of the Richards equation.  
Additional retention or hydraulic conductivity data, as well as a penalty function for constraining 
the optimized parameters to remain in some feasible region (Bayesian estimation) can be 
optionally included in the parameter estimation procedure.  Similarly, the procedure permits 
solute transport and/or reaction parameters to be estimated from observed concentrations and/or 
instantaneous or cumulative boundary solute fluxes during transient solute transport by numerical 
inversion of the convection-dispersion equation.  The unsaturated soil hydraulic and solute 
transport and reaction parameters can be estimated either sequentially or simultaneously. 
Depending upon the quality of observed data, soil hydraulic or solute transport parameters for 
several soil layers can be estimated simultaneously.  The parameter estimation procedure is 
demonstrated for several laboratory and field experiments. 
 
 
INTRODUCTION 
 

As increasingly more complicated computer models are being developed for simulating 
subsurface flow and transport processes, the accuracy of numerical simulations largely depends 
upon the accuracy with which various model parameters can be estimated.  Flow and transport 
models for the unsaturated zone are often based on numerical solutions of the Richards equation 
which requires knowledge of the unsaturated soil hydraulic functions, i.e., the soil water retention 
curve, θ(h), describing the relationship between the water content θ and the pressure head h, and 
the unsaturated hydraulic conductivity function, K(h), defining the hydraulic conductivity K as a 
function of h.  Accurate measurement of the hydraulic properties is difficult because of the highly 
nonlinear nature of these properties, especially K(h), instrumental limitations, and the extreme 
heterogeneity of the subsurface environment.  Hence, methods for making relatively fast and 
reliable measurements of the unsaturated soil-hydraulic properties remain sorely needed [van 
Genuchten and Leij, 1992]. 

A variety of field methods are currently available for direct measurement of the hydraulic 
conductivity, K, or the soil water diffusivity, D, as a function of h and/or θ [Klute and Dirksen, 
1986; Green et al., 1986].  Popular field methods include the instantaneous profile method, 
various unit-gradient type approaches, sorptivity methods following ponded infiltration, and the 
crust method based on steady water flow.  While relatively simple in concept, these direct 
measurement methods have a number of limitations that restrict their use in practice.  For 
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example, most methods are very time-consuming to execute because of the need to adhere to 
relatively restrictive initial and boundary conditions.  This is especially true for field gravity-
drainage experiments involving medium- and fine-textured soils.  Methods requiring repeated 
steady-state flow situations, or other equilibrium conditions are also tedious, while linearizations 
and other approximations or interpolations to allow analytic or semi-analytic inversions of the 
flow equation may introduce additional errors.  Finally, information about uncertainty in the 
estimated hydraulic parameters is not readily obtained using direct inversion methods. 

A much more flexible approach for solving the inverse problem is the use of parameter 
optimization methods [Hopmans and Šimçnek, 1999].  Optimization procedures make it possible 
to simultaneously estimate the retention and hydraulic conductivity functions from transient flow 
data [Kool et al., 1987].  While many possible scenarios exist for the application of parameter 
optimization methods, numerical inversion of the Richards equation has thus far been limited 
only, or nearly exclusively, to one-dimensional experiments [Kool et al., 1985; Russo et al., 
1991], mostly in conjunction with one-step or multi-step outflow experiments [Kool and Parker, 
1988; van Dam et al., 1992, 1994; Eching et al., 1993].  Nevertheless, other types of 
experiments, such as upward infiltration [Hudson et al., 1996] or evaporation methods [Ciollaro 
and Romano, 1995; Santini et al., 1995; Šimçnek et al., 1998d, 1999b], were also reported.  
Possible multi-dimensional applications involve the use of disc tension permeameters [Perroux 
and White, 1988; Ankeny et al., 1991, Šimçnek and van Genuchten, 1996, 1997; Šimçnek et al., 
1998a,c], a modified cone penetrometer [Gribb et al., 1998; Kodešová et al., 1998, 1999; 
Šimçnek et al., 1999a], a multistep soil-water extraction method [Inoue et al., 1998, 1999], 
infiltration from a furrow, and surface or subsurface drip irrigation experiments. 

In this paper we describe a parameter estimation procedure which combines the Levenberg-
Marquardt nonlinear parameter optimization method involving weighted least squares with either 
a one-dimensional numerical model, HYDRUS-1D [Šimçnek et al., 1998b], or a two- or quasi 
three-dimensional numerical model, HYDRUS-2D [Šimçnek et al., 1996], which solve the 
variably-saturated water flow and solute transport equations.  We demonstrate the proposed 
parameter estimation procedure on laboratory and field data, and briefly summarize many other 
applications of the HYDRUS models. 
 
 
FORWARD PROBLEM 
 
Variably-Saturated Water Flow 

The governing equation for two-dimensional isothermal Darcian water flow in a variably-
saturated rigid isotropic porous medium is given by the following modified form of the Richards 
equation: 
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where xi (i=1,2; with x2=z being the vertical coordinate positive upwards) are the spatial 
coordinates, t is time, S is a sink term, Kij

A are components of a dimensionless anisotropy tensor 
KA, and K is the unsaturated hydraulic conductivity function given as the product of the relative 
hydraulic conductivity, Kr, and the saturated hydraulic conductivity, Ks.  

Equation (1) can be solved numerically for a given set of initial and boundary equations.  
The HYDRUS-1D and -2D codes implement three different types of boundary conditions: 
specified pressure head (Dirichlet type) conditions of the form 

  t ,   = t ,h )()( xx ψ  (2) 

specified flux (Neumann type) conditions given by 
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and specified gradient conditions (e.g., free drainage associated with a unit hydraulic gradient) as 
follows 
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where ψ, σ, and ζ are the prescribed Dirichlet, Neumann, and gradient type boundary conditions, 
respectively, as functions of x and t, x is the spatial coordinate of a boundary, and ni are the 
components of the outward unit vector normal to boundary. 

The above boundary conditions can be implemented in HYDRUS-1D and -2D in several 
ways: as (a) constant boundary conditions (either flux or head), (b) variable boundary conditions 
(again either flux or head), (c) seepage faces, (d) atmospheric boundaries, and (e) free or deep 
drainage boundaries.  Boundary classes (a) and (b) represent system-independent boundary 
conditions, while (c), (d), and (e) are system dependent, i.e., they depend on the prevailing 
transient soil moisture or flux conditions.  As explained later, instantaneous or cumulative 
boundary fluxes across any of the boundaries, and water contents and pressure heads measured 
anywhere in the transport domain, can be included in the objective function for purposes of 
parameter identification. 

While different functions for the unsaturated soil-hydraulic properties may be used in the 
inverse problem, the expressions adopted in HYDRUS codes are those of van Genuchten [1980]: 
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and Brooks and Corey [1966]: 
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where θe is the effective water content, θr and θs denote the residual and saturated water contents, 
respectively, and α, n, m (= 1 - 1/n), and l are empirical parameters.  The hydraulic characteristics 
defined by (5) through (8) contain 6 unknown parameters: θr , θs , α, n, l, and Ks.  Of these, θr, θs, 
and Ks have a clear physical meaning, whereas α, n and l are essentially empirical parameters 
determining the shape of the retention and hydraulic conductivity functions [van Genuchten, 
1980]. 

For the hysteretic case the HYDRUS codes use the formulation of Kool and Parker [1987] 
who coupled the van Genuchten-Mualem model with a simplified scaling approach proposed by 
Scott et al. [1983] to describe the scanning curves.  Scott et al. [1983] assumed that the shape 
parameters α and n for all drying scanning curves are the same as those for the main drying curve 
and, similarly, the shape parameters for all wetting scanning curves are the same as those for the 
main wetting curve.  Scanning curves are then calculated by varying the residual and saturated 
water contents for the wetting and drying scanning curves, respectively. Kool and Parker [1987] 
further assumed that the shape parameter n is the same for both wetting and drying, thus 
decreasing the number of required parameters.  Using the additional restrictions that θr and θs are 
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the same for both drying and wetting, the only additional parameter describing hysteresis is a 
third shape parameter αd for the drying retention curve (we use αw for wetting). 

Equation (1) subject to initial and boundary conditions (2), (3) and (4) was solved 
numerically by means of the finite element method.  The solution scheme was based on the mass-
conservative numerical iterative scheme used by Celia et al. [1990].  A simple modification of 
this numerical scheme also permitts similar mass-conservative solutions of quasi-three-
dimensional axisymmetrical flow problems [Šimçnek et al., 1996]. 
 
Solute Transport 

We assume that solutes can exist in all three phases (liquid, solid, and gaseous) and that 
production and decay processes can be different in each phase. We further assume that solutes are 
transported by convection and dispersion in the liquid phase, as well as by diffusion in the gas 
phase.  The partial differential equations governing the nonequilibrium chemical transport of 
solutes involved in a sequential first-order decay chain during transient water flow in a variably 
saturated rigid porous medium are taken as [Šimçnek et al., 1998b]: 
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where for simplicity the one-dimensional formulation is used. In (9) c, s, and g are solute 
concentrations in the liquid, solid and gas phases, respectively; q is the volumetric flux density, 
µw, µs , and µg are first-order rate constants for solutes in the liquid, solid and gas phases, 
respectively; µwN, µsN, and µgN are similar first-order rate constants providing connections between 
individual chain species, γw , γs, and γg are zero-order rate constants for the liquid, solid and gas 
phases, respectively; ρ is the soil bulk density, av is the air content, S is the sink term in the flow 
equation (1), cr is the concentration of the sink term, Dw is the dispersion coefficient for the liquid 
phase, and Dg is the diffusion coefficient for the gas phase.  The subscripts w, s, and g correspond 
with the liquid, solid and gas phases, respectively; subscript k represents the kth chain number, 
and ns is the number of solutes involved in the chain reaction.  The nine zero- and first-order rate 
constants in (9) may be used to represent a variety of reactions or transformations including 
biodegradation, volatilization, and precipitation. 

The HYDRUS codes may be used to simulate nonequilibrium interactions between the 
solution (c) and adsorbed (s) concentrations, and equilibrium interaction between the solution (c) 
and gas (g) concentrations of the solute in the soil system.  The equilibrium adsorption isotherm 
relating s and c is described by a generalized nonlinear equation of the form 
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where ks, β and η are empirical coefficients.  The Freundlich, Langmuir, and linear adsorption 
equations are special cases of (10).  The concentrations g and c are related by a linear expression 
of the form 

 c k = g g  (11) 

where kg is an empirical constant, often referred to as Henry’s constant. 
The concept of two-site sorption [Selim et al., 1977; van Genuchten and Wagenet, 1989] is 

implemented in the HYDRUS codes to permit consideration of nonequilibrium adsorption-
desorption reactions.  The two-site sorption concept assumes that the sorption sites can be divided 
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into two fractions. Sorption, se, on one fraction of the sites (the type-1 sites) is assumed to be 
instantaneous, while sorption, sk, on the remaining (type-2) sites is considered to be time-
dependent.  The mass balance equation for the type-2 sites in the presence of production and 
degradation is given by 
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where ω  is the first-order rate constant and  f is the fraction of exchange sites assumed to be in 
equilibrium with the solution phase. 

The HYDRUS models also implement the concept of two-region, dual-porosity type solute 
transport [van Genuchten and Wierenga, 1976] to permit consideration of physical 
nonequilibrium transport.  The two-region concept assumes that the liquid phase can be 
partitioned into mobile (flowing), θm, and immobile (stagnant), θim, regions and that solute 
exchange between the two liquid regions can be modeled as a first-order process, i.e., 
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where cim is the concentration in the immobile region and ω is the mass transfer coefficient. 
By selecting certain values of the γw, γs, γg, µw, µs, µg, µw', µs', µg', η, ks, kg, f, θim, β and ω 

in (9) through (13), the entire system can be simplified significantly.  

 
 
FORMULATION OF INVERSE PROBLEM 
 

The inverse problem may be carried out using several direct and indirect methods [Neuman, 
1973].  Direct methods treat the model parameters as dependent variables in a formal inverse 
boundary value problem [Yeh, 1986].  Indirect approaches, such as the one used in this paper, 
attempt to minimize a suitable objective function which expresses the discrepancy between 
observed and predicted system response.  Initial estimates of the assumed unknown hydraulic and 
transport parameters are then iteratively adjusted and improved upon during the minimization 
procedure until a desired precision is obtained. 

When measurement errors follow a multivariate normal distribution with zero mean and 
covariance matrix V, the likelihood function can be written as [Bard, 1974] 
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where L(b) is the likelihood function, b = {b1, b2,..., bm} is the vector of unknown parameters (θr, 
θs, α, n, l, Ks, λ, µw, µs, β, η, and/or others), m is the number of parameters to be estimated, q* = 
{q1

*, q2
*,..., qn

*} is a vector containing the observations (e.g., observed pressure heads, water 
contents, concentrations, and/or cumulative and actual water or solute infiltration or outflow 
rates), q(b) = {q1, q2,..., qn} is a vector of corresponding model predictions obtained with the 
unknown parameters, and n is the number of observations.  The maximum likelihood estimate is 
that value of the unknown parameter vector b that maximizes the value of the likelihood function. 
 Assuming that the covariance matrix V is diagonal, i.e., the measurement errors are uncorrelated, 
the problem of maximizing the likelihood function simplifies in a weighted least-squares 
minimization problem 
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where wi is the weight assigned to a particular measured value. 
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If something about the distribution of the fitted parameters is known before the inversion, 
that information can be included into the parameter identification procedure by multiplying the 
likelihood function with the prior probability density function (pdf), p0(b), which summarizes the 
prior information.  Estimates which make use of prior information are known as Bayesian 
estimates, and lead to the maximization of a posterior pdf, p*(b), given by 

 )()()( bbb p L c = p 0
*  (16) 

in which c is a constant.  The posterior density function is proportional to the likelihood function 
when the prior distribution is uniform 

The objective function Φ to be minimized during the parameter estimation process in both 
HYDRUS models is defined as [Šimçnek et al., 1998b,c]: 
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where the first term on the right-hand side represents deviations between the measured and 
calculated space-time variables (e.g., observed pressure heads, water contents, and/or 
concentrations at different locations and/or time in the flow domain, or actual or cumulative 
fluxes versus time across a boundary of specified type).  In this term, mq is the number of 
different sets of measurements, nqj is the number of measurements within a particular 
measurement set, qj

*(x,ti) represents specific measurements at time ti for the jth measurement set 
at location x, qj(x,ti,b) represents the corresponding model predictions for the vector of optimized 
parameters b (e.g., θr, θs, α, n, l, Ks, Dl, kg, ...), and vj and wi,j are weights associated with a 
particular measurement set or point, respectively.  The second term on the right-hand side of (17) 
represents differences between independently measured and predicted soil hydraulic properties 
(e.g., retention, θ(h), and/or hydraulic conductivity, K(θ) or K(h), data), while the terms mp, npj, 
pj

*(θi), pj(θi, b), vj and wi,j have similar meanings as for the first term but now for the soil 
hydraulic properties.  The last term of (17) represents a penalty function for deviations between 
prior knowledge of the soil hydraulic parameters, bj

*, and their final estimates, bj, with nb being 
the number of parameters with prior knowledge and vj representing pre-assigned weights. We 
note that the covariance (weighting) matrices which provide information about the measurement 
accuracy, as well as any possible correlation between measurement errors and/or parameters, are 
assumed to be diagonal in both models. The weighting coefficients vj may be used to minimize 
differences in weighting between different data types because of different absolute values and 
numbers of data involved, and are given either by [Clausnitzer and Hopmans, 1995]: 

 σ 2/1 jjj  n =  v  (18) 

which causes the objective function to become the average weighted squared deviation 
normalized by the measurement variances σj

2, or by 
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where qj
 is the mean of a particular measurement set, or can be specified independently as input. 
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SOLUTION OF THE INVERSE PROBLEM 
 

Many techniques are available for solving the nonlinear minimization/maximization problem 
[Bard, 1974; Yeh, 1986; Kool et al., 1987].  Most methods are iterative by starting first with a 
given initial estimate bi of the unknown parameters to be estimated, followed by a study of how 
the objective function Φ(b) behaves in the vicinity of the initial estimate.  Based upon this 
behavior one selects a direction vector vi such that the new value of the unknown parameter 
vector, i.e., 

 vbb i iii ρ  +    =  1+  (20) 

decreases the value of the objective function: 

 ΦΦ ii   <  1+  (21) 

where Φi and Φi+1 are the objective functions at the previous and current iteration level, and ρi is 
a scalar which insures that the iteration step is acceptable.  Methods based on (20) are called 
gradient methods.  Differences among the various gradient methods presented in the literature 
(e.g., steepest descent, Newton's method, directional discrimination, Marquardt's method, Gauss 
type methods, variable metric methods, and interpolation-extrapolation methods) are a result of 
differences in choosing the step direction vi and/or the step size ρi [Bard, 1974].  In the HYDRUS 
models we use Marquardt's [1963] method which has proven to be very effective in many 
applications involving nonlinear least-square fitting.  The method represents a compromise 
between the inverse-Hessian and steepest descend methods by using the steepest-descent method 
when the objective function is far from its minimum, and switching to the inverse-Hessian 
method close to the minimum. 
 
 
HYDRUS-1D EXAMPLES 
 

Because of a very general formulation of the inverse problem and the possibility to use 
different combinations of boundary conditions, the HYDRUS models can be used for a wide 
variety of parameter optimization problems.  Typical applications include onestep [Kool et 
al., 1985] and multistep [van Dam et al., 1992, 1994; Eching et al., 1993] outflow 
experiments, upward infiltration [Hudson et al., 1996], and evaporation experiments 
[Ciollaro and Romano, 1995; Santini et al., 1995; Šimçnek et al., 1998d, 1999b].  Below we 
demonstrate the use of HYDRUS-1D for estimating the soil hydraulic parameters from 
multistep outflow data, and a horizontal infiltration experiment followed by redistribution. 
The latter example demonstrates the use of HYDRUS-1D for evaluating water flow involving 
hysteresis.  We will also use HYDRUS-1D here to estimate nonlinear parameters for solute 
transport involving Freundlich adsorption by analyzing a measured breakthrough curve. 
 
Inverse Analysis of a Multistep Outflow Experiment 

In this test example we analyze a multistep outflow experiment with simultaneous 
measurement of the pressure head inside the soil sample [Hopmans, personal communication]. 
The experimental setup consisted of a 6-cm long soil column in a Tempe pressure cell modified 
to accommodate a microtensiometer-transducer system.  A tensiometer was installed, with the 
cup centered 3 cm below the soil surface.  The soil sample was saturated from the bottom and 
subsequently equilibrated to an initial soil water pressure head of -25 cm at the soil surface.  
Pressures of 100, 200, 400, and 700 cm were subsequently applied in consecutive steps at 0, 
12.41, 48.12, and 105.92 hours, respectively.  Figure 1 compares the measured and optimized 
cumulative outflow curves for the soil sample, while Figure 2 compares measured and optimized 
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pressure heads.  Excellent agreement was obtained for both variables.  The final fit for the 
optimized soil hydraulic parameters (θr=0.197, θs=0.438, α=0.0101 cm-1, n=1.43, l=3.80, and 
Ks=0.521 cm h-1) had an r2 of 0.9995. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Measured and optimized cumulative bottom flux during a multistep outflow experiment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  Measured and optimized pressure heads in soil sample during a multistep outflow experiment. 
 
 
Horizontal Infiltration Followed by Redistribution 

This example demonstrates the use of HYDRUS-1D for analyzing transient hysteretic 
flow.  Data used in this example were published by Vachaud [1968].  A horizontal soil 
column of 60 cm length and having an internal diameter of 9 cm was used.  The initially air 
dry silty soil was subjected to a zero pressure at one end of the column for 620 minutes, after 
which water was allowed to redistribute.  Although water contents were measured for about 
25 days with a γ-ray attenuation technique at about 20 points in the column, we used data 
from only 10 points for the inversion.  The soil hydraulic parameters in the hysteresis model 
of Kool and Parker’s [1987] assuming different α values for the wetting and drying curves (αw, 
αd), were optimized.  Figure 3 shows measured and fitted water contents during the entire 
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experiment.  An excellent fit could be obtained only when hysteresis was considered. The 
following soil hydraulic parameters were obtained: θr=0.009, θs=0.423, αd=0.0637 cm-1, 
αw=0.0910 cm-1, n=3.86, l=1.47, and Ks=0.0202 cm min-1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.  Measured and optimized water contents at 10 locations in a soil column 
during horizontal infiltration followed by redistribution. 

 
 

Nonlinear Solute Transport 
This example demonstrates the use of HYDRUS-1D to estimate nonlinear solute 

transport parameters from breakthrough curves.  A 10.75-cm long soil column was first 
saturated with a 10 mmolcL-1 CaCl2 solution.  The experiment consisted of applying a 14.26 
pore volume pulse (t=358.05 h) of a 10 mmolcL-1 MgCl2 solution, followed by the original 
CaCl2 solution.  The adsorption isotherm was determined independently with the help of 
batch experiments [Selim et al., 1987], and fitted with the Freundlich equation to yield 
ks=1.687 cm3g-1 and β=1.615. 

Only the coefficients of the Freundlich isotherm (i.e., ks and β) were optimized.  Since 
the governing solute transport equation is nonlinear, one can not use an analytical solution in 
this case but must resort to a numerical model.  The observed Mg breakthrough curve is 
shown in Figure 4, together with the fitted breakthrough curve obtained with HYDRUS-1D.  
The results indicate a reasonable prediction of the measured breakthrough curve for the final 
estimates of the optimized solute transport parameters (ks=0.943, and β=1.774). 
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Fig. 4.  Measured and optimized breakthrough curve for a nonlinear solute transport problem. 
HYDRUS-2D EXAMPLES 
 

Similarly as HYDRUS-1D, HYDRUS-2D [Šimçnek et al., 1996] can be used for a broad 
range of inverse problems.  Recent applications with HYDRUS-2D include estimating soil 
hydraulic parameters from data collected with a tension disc infiltrometer [Šimçnek and van 
Genuchten, 1996, 1997; Šimçnek et al., 1998a,c], a modified cone penetrometer [Gribb et al., 
1998; Kodešová et al., 1998, 1999; Šimçnek et al., 1999a], and using multistep soil water 
extraction device [Inoue et al., 1998, 1999].  Below is an example of the use of HYDRUS-2D 
for analyzing tension disc infiltrometer data. 
 
Tension Disc Infiltrometer Example 

Tension infiltrations are increasingly being used for evaluating saturated and unsaturated 
hydraulic conductivities, and for quantifying the effects of macropores and preferential flow 
paths on infiltration.  A relatively standard way for estimating unsaturated hydraulic 
conductivities from tension infiltrometer data has been to invoke Wooding's [1968] analytical 
solution.  This approach requires steady-state infiltration rates for two different supply pressure 
heads, and assumes applicability of an exponential function for K(h).  Šimçnek and van 
Genuchten [1996] suggested the combined use of transient infiltration data obtained during a 
single tension infiltration experiment, and tensiometer or TDR data measured in the soil below 
the disc, to estimate the unknown soil hydraulic parameters via parameter estimation.  We later 
revised this method by using multiple tension infiltration experiments in combination with 
knowledge of the initial and final water contents [Šimçnek and van Genuchten, 1997].  This 
modification avoided the cumbersome use of tensiometers and TDRs.  An evaluation of the 
numerical stability and parameter uniqueness using numerically generated data with 
superimposed stochastic and deterministic errors showed that a combination of multiple 
cumulative tension infiltration data, a measured final water content, and an initial condition 
expressed in terms of the water content, provided the most promising parameter estimation 
approach for practical applications [Šimçnek and van Genuchten, 1997]. 

The numerical inversion method was later used to estimate the soil hydraulic characteristics 
of a two-layered crusted soil system in the Sahel region of Africa [Šimçnek et al., 1998c].  Here 
we will report only results for the sandy subsoil obtained with a tension disc diameter of 25 cm 
and with supply tensions of 11.5, 9, 6, 3, 1, and 0.1 cm.  Figure 5 shows measured and optimized 
cumulative infiltration curves.  The small breaks in the cumulative infiltration curve were caused 
by brief removal of the infiltrometer from the soil surface to resupply the instrument with water 
and adjust the tension for a new time interval. Very close agreement between the measured and 
optimized cumulative infiltration curves was obtained; the largest deviations were generally less 
than 60 ml, which was only about 0.5% of the total infiltration volume.  Figure 6 shows a 
comparison of the parameter estimation results against results obtained with Wooding's analysis.  
Both methods give almost identical unsaturated hydraulic conductivities for pressure heads in the 
interval between -2 and -10.25 cm.  However, the hydraulic conductivity in the highest pressure 
head interval was overestimated by a factor of two using Wooding's analysis.  Šimçnek et al. 
[1998c] further compared the numerical inversion results with hydraulic properties estimated 
from available soil textural information using a neural-network-based pedotransfer function 
approach.  They reported relatively good agreement between the inverse and neural network 
predictions. 
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Fig. 5.  Measured and optimized cumulative infiltration curves for a tension disc infiltrometer 
experiment carried out in the Sahel region. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.  Unsaturated hydraulic conductivities calculated using Wooding's analytical solution for 
particular pressure heads, and the complete function obtained with numerical inversion. 

 
 
CONCLUSIONS 
 

Two numerical codes (HYDRUS-1D and HYDRUS-2D) were developed for identifying 
soil-hydraulic and solute transport parameters from unsaturated flow and transport data in a one-, 
two-, and quasi-three-dimensional porous media.  The utility of the two codes was demonstrated 
using data typically obtained during multistep outflow experiment, horizontal infiltration 
followed by redistribution, a column miscible displacement (breakthrough) study, and a three-
dimensional disc permeameter infiltration experiment.   Because of their generality (in terms of 
the definition of the objective function, the possible combination of different boundary and initial 
conditions, and options for considering multi-layered systems), both models are extremely useful 
tools for analyzing a broad range of steady-state and transient laboratory and field flow and 
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transport experiments. 
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